Deftaudio LaserHarp LH-8/50 Инструкция по эксплуатации

Внимание!

Вычислительный блок содержит промышленный лазер мощностью 50мВт. Не допускайте прямого попадания лучей в глаза, а также в фото- и видеоаппаратуру!

1. Описание вычислительного модуля и органов управления.

Вычислительный модуль располагается в основании лазерной арфы и служит ключевым элементом. В его состав входят:

- лазерный модуль промышленного исполнения с теплоотводом
- блок управления разверткой луча
- блок обработки показаний сенсоров и их индивидуальной калибровки
- блок оцифровки сенсоров, формирования команд Note-on / Note-off
- активная система охлаждения

С обратной стороны модуля располагаются:

- Общий выключатель. Отвечает за общую цепь питания и охлаждение.
- Разъем Din5 Midi Out.
- Разъем DB-15М для поключения модуля сенсоров.

Deftaudio 2008, версия 0.9

На передней панели располагаются:

- А. Индикация включения блока развертки луча зеленый светодиод
- В. Индикация выполнения демо-программы красный светодиод
- С. Переключатель со средним положением. Верхнее положение означает включение всех модулей. Среднее – все модули выключены(охлаждение работает). Нижнее – включение основного блока формирования команд для программирования.
- **D.** Reset блока формирования команд
- Е. Общая подстройка чувствительности всех сенсоров.
- **F.** Индивидуальная настройка сенсоров и индикация срабатывания
- **G**. Дисплей
- H. Menu
- I. + Увеличить значение
- J. Уменьшить значение

На дне вычислительного модуля выполнен механизм крепления а также регуляторы яркости и контрастности дисплея

Deftaudio 2008, версия 0.9

2.Включение основного модуля.

<u>Режим Play.</u>

Для включения основного модуля в режим исполнения необходимо перевести выключатель общего питания в положение ON, а переключатель **С** в верхнее положение. После этого произойдет выполнение демо-программы, во время которой луч лазера постепенно рисует рабочий сектор. Продолжительность демо-программы около 20 секунд, при этом горят зеленый и красный светодиоды. Основной дисплей в этот момент выключен. По окончанию демо выключается красный светодиод, включается дисплей, вычислительный процессор, блок обработки сенсоров и сами сенсоры. Готовность инструмента к игры отражает следующая надпись на дисплее.

Калибровка сенсоров.

Данная процедура также осуществляется из режима Play. Она необходима каждый раз при изменении условий освещенности. Для этого рекомендуется установить регулятор **E** общей чувствительности в среднее положение. Для каждого из восьми лучей выполнить индивидуальную настройку так, чтобы соответствующий светодиод светился, если луч закрыт, и немного мерцал, если открыт.

В дальнейшем подстройку можно проводить только с помощью общего регулятора.

Режим Программирования блока формирования команд.

Установка параметров может осуществляться:

1. из режима Play. При этом программа развертки луча продолжает свое выполнение.

2. выйдя из режима Play, переключив переключатель **С** в среднее положение, а потом в нижнее. В данном случае программа развертки луча будет остановлена.

Рабочие параметры инструмента располагаются в энергонезависимой памяти инструмента. При обесточивании, перемещении, изменении температурных условий они также сохраняются.

Подробно этот режим рассмотрен в гл3.

3.Настройка midi параметров и вычислительного модуля.

Для того, чтобы войти в меню настроек с последующим их сохранением, необходимо, удерживая кнопку _Menu_ , нажать _Reset_ в верхнем или нижнем положении переключателя **C**. При этом конфигурируемый параметр и его значение будут отображаться на дисплее. Для изменения значения используйте клавиши +/-. Для перехода к следующему параметру необходимо нажать _Menu_.

ISe	tü	P	ΠŲ	e٣	1.		
						12	

Экран 1. Вход в режим конфигурации.

Экран 2. Установка midi канала, по которому происходит передача сообщений. (1-16)

		5		t. s		P		Ų 1					1				
--	--	---	--	---------	--	---	--	--------	--	--	--	--	---	--	--	--	--

TSe	ŧi	IP.	Ų	e	P		1	.0	
La	se	H.	8					98,	

Экран 3-10. Высота ноты для каждого луча. (1-127).

	Ноты												
Октава	С	C#	D	D#	Е	F	F#	G	G#	Α	A#	В	
0	0	1	2	3	4	5	6	7	8	9	10	11	
1	12	13	14	15	16	17	18	19	20	21	22	23	
2	24	25	26	27	28	29	30	31	32	33	34	35	
3	36	37	38	39	40	41	42	43	44	45	46	47	
4	48	49	50	51	52	53	54	55	56	57	58	59	
5	60	61	62	63	64	65	66	67	68	69	70	71	
6	72	73	74	75	76	77	78	79	80	81	82	83	
7	84	85	86	87	88	89	90	91	92	93	94	95	
8	96	97	98	99	100	101	102	103	104	105	106	107	
9	108	109	110	111	112	113	114	115	116	117	118	119	
10	120	121	122	123	124	125	126	127					

Таблица зависимости нот от их значения на дисплее.

Экран 11. Порог срабатывания АЦП по сигналам блока обработки сенсоров.(1-127) Устанавливается при изготовлении, изменение в процессе эксплуатации не требуется.

Экран 12. Управление алгоритмом подавления пульсации. Для подавления мерцания лучей в цифровом тракте, основная программа содержит алгоритм подавления пульсации. Данный алгоритм позволяет пренебречь мерцанием лучей и избежать ложных срабатываний. Данная величина пропорциональна времени «несвечения луча»(1-127). При высоком значении существенно увеличивается время распознавания касания луча. При недостаточном значении параметра алгоритм становится неэффективным и допускает ложные срабатывания. Устанавливается при изготовлении, в процессе эксплуатации допускается изменение. Рекомендуется использовать программы мониторинга midi канала во время подбора.

Экран 13. Величина на которую будет увеличено номинальное значение Velocity равное 70. (1-57)